
Speed Control and Scheduling of Data Mules in

Sensor Networks

RYO SUGIHARA and RAJESH K. GUPTA

University of California, San Diego

Unlike traditional multihop forwarding among stationary sensor nodes, use of mobile devices for

data collection in wireless sensor networks has recently been gathering more attention. The use of
mobility significantly reduces the energy consumption at sensor nodes, elongating the functional
lifetime of the network. However, a drawback is an increased data delivery latency. Reducing

the latency through optimizing the motion of data mules is critical for this approach to thrive.
In this paper, we focus on the problem of motion planning, specifically, determination of speed
of the data mule and the scheduling of the communication tasks with the sensors. We consider
three models of mobility capability of data mule to accommodate different types of vehicles. Under

each mobility model, we design optimal and heuristic algorithms for different problems: single data
mule case, single data mule with periodic data generation case, and multiple data mules case. We
compare the performance of the heuristic algorithm with a naive algorithm and also with multihop

forwarding approach by numerical experiments. We also compare one of the optimal algorithms
with a previously proposed method to see how our algorithm improves the performance and is also
useful in practice. As far as we know, this study is the first of a kind that provides a systematic
understanding of the motion planning problem of data mules.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms: Algorithm, Design, Performance

Additional Key Words and Phrases: Controlled mobility, motion planning, scheduling, linear

programming, simulation

1. INTRODUCTION

Controlled mobility presents an attractive alternative to multihop forwarding for
efficient data collection in a sensor field. In particular, we consider collecting data
from stationary sensor nodes using “data mules” via wireless communication. A
data mule is a mobile node with radio and sufficient amount of storage to store the
data from the sensors in the field. Data mules have been used in recent sensor net-
work applications, e.g., a robot in underwater environmental monitoring [Vasilescu
et al. 2005] and a UAV (unmanned aerial vehicle) in structural health monitoring
[Todd et al. 2007]. A data mule travels across the sensor field and collects data from
each sensor node while the distance is short, and later deposits all the data to the
base station. In this way, each sensor node can conserve energy, since it only needs

...
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–28.

2 · R. Sugihara and R. K. Gupta

to send the data over a short distance and has no need to forward other sensors’
data all the way to the base station. Note that energy issue is critical for sensor
nodes as opposed to the data mule that returns to the base station after the travel.
However, one disadvantage of this approach is that it generally takes more time to
collect data, which in turn incurs larger data delivery latency. Thus optimizing the
data delivery latency is vital for the data mule approach to be useful in practice.

Optimizing the motion of data mule is a hard problem in general, since we need
to find a trajectory satisfying both spatial constraints (i.e., wireless communication
range) and temporal constraints (i.e., time required for data collection), where the
spatial constraints alone is analogous to traveling salesman problem. To deal with
the hardness, previous studies on data mule approaches [Kansal et al. 2004; Soma-
sundara et al. 2004; Ma and Yang 2006; Xing et al. 2007] simplified the problem by
using simple models for mobility and communications. These simplifications lead
to suboptimal solutions with unnecessarily large latency. Moreover, since these al-
gorithms are often tailored for specific settings, it is difficult to compare them and
use them for similar problems in different application scenarios.

To address these limitations, in this paper we describe a problem framework
that we call data mule scheduling (DMS) problem. The DMS problem captures
the motion planning problem as one composed of loosely connected subproblems
of path selection, speed control, and job scheduling. This framework enables us to
identify the cases of the problem that we can optimally solve, as well as the hard
cases that we explore heuristics.

Our focus in this paper is on the one dimensional case of the DMS problem (1-D
DMS). The 1-D DMS problem is to determine the speed change and data collection
schedule to minimize the data delivery latency. This applies to many cases in
which the data mules move on the fixed paths. We first discuss the basic case,
where a single data mule collects a given amount of data from each sensor node.
We show we can give an optimal speed change and data collection schedule when
the data mule’s mobility model is either constant speed or variable speed. For
a case when there is an acceleration constraint, we design a heuristic algorithm.
Later we discuss the cases of periodic data generation and multiple data mules.
In the periodic data generation case, each sensor node generates data at a certain
rate and the data mule travels repetitively. In the multiple data mules case, data
mules move either along an identical path or arbitrary paths. For both of these
cases, we design optimal and heuristic algorithms in a similar way as the basic
case. By numerical experiments, the performance of the proposed algorithms is
evaluated against multihop forwarding approach and a previously proposed speed
control algorithm.

Our contributions are:

—Formulate the data mule scheduling (DMS) problem, a problem framework for
optimal control of data mule for minimizing the data delivery latency;

—Present optimal and heuristic algorithms for one dimensional case of the DMS
problem (1-D DMS) in various problem settings including single data mule, mul-
tiple data mules, and periodic data generation, each for three different mobility
models.

The rest of this paper is organized as follows. In Section 2 we give an overview

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 3

(a) Path selection (b) Speed control

Speed

Time

(c) Job scheduling

Communication range

node A

node B node C
Location

A

B

C

A

B

C

)(Ae
)(Be
)(Ce

Execution timeLocation job

Time

)(Ae
)(Be
)(Ce

)(Ae
)(Be
)(Ce

Execution time

A’

B’

C’

A’

B’

C’

Job

Time

A’

B’

C’
TimeTime

A’

B’

C’

A’

B’

C’

Fig. 1. Subproblems of data mule scheduling

of the DMS problem framework. We also introduce an application example and
related work. In Section 3 we define the 1-D DMS problem in more details and
introduce mobility models we consider. We also discuss the feasibility testing by
processor demand analysis that we use in designing the optimal algorithms. We
present optimal and heuristic algorithms for the basic cases of single data mule
in Section 4. Periodic case with single data mule is discussed in Section 5. In
Section 6, we discuss multiple data mules cases. Section 7 shows the results of the
simulation experiments and Section 8 concludes the paper.

2. PROBLEM FRAMEWORK FOR MOTION PLANNING OF DATA MULE

In this section we present the data mule scheduling (DMS) framework for optimizing
the motion of data mule. As we have discussed in the introduction, motion planning
of data mule is a hard problem. Communications with sensor nodes need to take
place in the proximity of each node and will take certain time duration, whereas
the motion of data mule is possibly governed by dynamics constraints. There is
also a prioritization problem when the data mule is in the communication ranges
of multiple nodes.

To deal with this complexity, in the DMS framework, we decompose the problem
into the following three subproblems as shown in Figure 1:

(1) Path selection: which trajectory the data mule follows

(2) Speed control: how the data mule changes the speed while moving along the
path

(3) Job scheduling: from which sensor the data mule collects data at each time
point

Path selection is to determine the trajectory of the data mule in the sensor
field. To collect data from each particular sensor, the data mule needs to enter the
sensor’s communication range at least once. Depending on the capability of data
mule, there may be some constraints on path selection, such as minimum turning
radius.

Speed control is the second subproblem to determine how the data mule changes
its speed along the chosen path. The data mule needs to change the speed so that

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · R. Sugihara and R. K. Gupta

it stays within each sensor’s communication range long enough to collect all the
data from it.

Final subproblem is job scheduling. Once the time-speed profile is determined,
we get a mapping from each location to a time point. Thus we get a scheduling
problem by regarding data collection from each sensor as a job. Each job has one
or more intervals in which it can be executed. Job scheduling is to determine the
allocation of time to jobs so that all jobs can be completed.

The DMS problem is general and can be used to express several earlier problems
in the area. For instance, the assumption of no wireless communication (as in
[Somasundara et al. 2004; 2007]) is easily expressed by setting the communication
range to zero in the path selection subproblem. The constant speed assumption (as
in [Ma and Yang 2006; 2007; Xing et al. 2007]) and variable speed assumption (as
in [Zhao and Ammar 2003; Kansal et al. 2004]) are handled in the speed control
subproblem.

In this paper, we focus on the subproblems of speed control and job scheduling.
These subproblems constitute the one dimensional case of data mule scheduling
problem (1-D DMS). The 1-D DMS problem is important in many cases when the
data mule needs to move along a given path.

A solution for the 1-D DMS problem is twofold. One is “time-speed profile,”
which determines the speed changes of the data mule. With a time-speed profile,
each point on the location axis can be mapped onto a point on the time axis. Then
we obtain a scheduling problem having a set of jobs, each of which has an execution
time and feasible intervals. For this problem, we need to determine “job schedule”
that defines when the data mule communicates with each node.

The objective of the 1-D DMS problem is to find a speed control plan and a
feasible job schedule so that the total travel time of the data mule is minimized.

2.1 Why Do We Minimize the Latency?

As mentioned earlier, data mules can be used as an alternative to multihop for-
warding in sensor networks. The use of data mules in collecting data introduces
the trade-off between energy consumption and data delivery latency. Our goal is
to optimize this trade-off through either minimizing the energy consumption under
some latency constraint or minimizing the latency under some constraint on energy
consumption.

Protocol designers have tried to optimize the multihop forwarding in both energy
and latency through sophisticated MAC protocols [Ye et al. 2002; Polastre et al.
2004; Rhee et al. 2005]. Data mule, or its combination with multihop forwarding, is
a relatively nascent area. In this paper, we focus on the pure data mule approach,
in which each node uses only direct communication with the data mule and no
multihop forwarding. Energy consumption related to communication is already
minimized in this case, since each node only sends its own data and does not
forward others’ data. Naturally, our objective is to minimize the data delivery
latency by minimizing the travel time of the data mule.

2.2 Example Application: SHM with UAV

Our problem formulation is based on our experience with the example applica-
tion described in [Todd et al. 2007]. It is a structural health monitoring (SHM)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 5

application to do post-event (e.g., earthquakes) assessments for large-scale civil in-
frastructure such as bridges. Automated damage assessment using sensor systems
is much more efficient and reliable than human visual inspections.

In this application, the sensor nodes operate completely passively and do not
carry batteries, for the sake of long-term measurement and higher maintainability.
Upon data collection, an external mobile element provides energy to each node via
microwave transmission, wakes it up, and collects data from it. The prototype sys-
tem uses a radio-controlled helicopter as the mobile element that is either remotely-
piloted or GPS-programmed. Each sensor node is equipped with ATmega128L mi-
crocontroller, a 2.4GHz XBee radio, antennas for transmission/reception, and a
supercapacitor to store the energy. Each node has two types of sensors. One is
a piezoelectric sensing element integrated with nuts and washers to check if the
bolt has loosened. The other is capacitive-based sensors for measuring peak dis-
placement and bolt preload. Since the size of data from these sensors are small,
communication time is almost negligible; however, it takes a few minutes to charge
a supercapacitor through microwave transmission in the current prototype. The
team is currently investigating a new design to improve the charging time down to
tens of seconds.

The data collected by the UAV is brought back to the base station and ana-
lyzed by researchers using statistical techniques for damage existence and its lo-
cation/type. Since the primary purpose of this application is to assess the safety
of large civil structures after a disaster such as an earthquake, every process in-
cluding data collection and analysis needs to be as quick as possible for prompt
recovery. Furthermore, shorter travel time is required in view of the limited fuel on
the helicopter.

Thus the goal of our formulation is to achieve data collection from spatially dis-
tributed wireless sensors in the minimum amount of time. It also provides another
reason for using data mule approach instead of multihop forwarding: simply because
the SHM sensors are not capable of doing multihop communication. Furthermore,
use of UAVs implies the need for more precise mobility model that takes accelera-
tion constraint into consideration, as opposed to the simple “move or stop“ model
used in majority of the related work.

2.3 Related Work

Data mule approaches, or using controlled mobility for improving data collection
performance in sensor or mobile ad hoc networks, have been discussed in various
papers from both theoretical and applications perspectives [Zhao and Ammar 2003;
Ho and Fall 2004; Vasilescu et al. 2005; Ma and Yang 2006; Somasundara et al.
2006; Somasundara et al. 2007; Xing et al. 2008; Chebrolu et al. 2008]. For an
overview of data mule and similar approaches, see [Ekici et al. 2006]. Our work
on the DMS problem has been focused on identifying the combinatoric nature of
the problem among its various variants in an attempt to develop a comprehensive
understanding of fundamental performance limits of data mule approach.

Ma and Yang [2006; 2007] study the problem of maximizing the network lifetime,
which is defined as the time until the first node dies (i.e. minimum of the lifetime
of all nodes), by finding an optimal motion of a data mule. Speed control is not
their focus and they just use a constant speed mobility model. They also avoid

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · R. Sugihara and R. K. Gupta

the problem of scheduling by assuming either that data communication time is
negligible (in [Ma and Yang 2006]) or that the data mule stops while communicating
with sensor nodes (in [Ma and Yang 2007]). However, the former assumption does
not apply when data size is big and communication is slow, and the latter results
in inefficiency when the data mule can actually communicate while it is moving.

Zhao and Ammar [2003] study the use of controlled mobility in mobile ad hoc
networks. They assume a controllable mobile node (called “ferry”) that mediates
communications between sparsely deployed stationary nodes. The speed of ferry is
basically constant but can be reduced when it is necessary to communicate more
data with a node. They have formulated the problem as a linear programming
problem. Our work is similar and we build our formulations upon theirs, but with
extensions that include more general mobility models, as well as other scenarios
including multiple data mules and periodic motions.

A more sophisticated speed controlling scheme has been proposed by Kansal
et al. [2004] and Somasundara et al. [2006]. Assuming a data mule periodically
travels across the sensor field along a fixed path, they propose an adaptive speed
control algorithm. In the algorithm, the data mule slows down when it encounters
the nodes from which data collection has not been very successful in the previous
period. Their speed control algorithm is reactive in the sense it is solely based on
the past performance. By contrast, we study a proactive approach when we have a
priori information on the communication range and data collection time.

For multiple data mules case, Jea et al. [2005] study the case in which multiple
data mules move on fixed paths. They present a distributed coordination scheme
for allocating sensor nodes to each data mule to achieve a good distribution of com-
munications load. They just assume movements at the given constant speed. Our
work is complementary to their work and focused on identifying the performance
limits of centralized schemes when we can freely determine the path and speed of
each data mule. This would serve as a performance target for distributed schemes.

Our formulation as the DMS problem is closely related to scheduling. It is known
that the Earliest Due Date (EDD) rule, in which the earliest deadline among all
available jobs is executed at any time slice, is optimal for single processor preemptive
scheduling with release times [Stankovic et al. 1995]. On the other hand, our
problem is not standard in that each job may have multiple feasible intervals. As
far as we know, there are only few studies on this case: for unit-length, non-
preemptible jobs [Simons and Sipser 1984] and for preemptible, non-continuable
(i.e., jobs must be completed within one feasible interval) jobs [Shih et al. 2003;
Chen et al. 2005], both of which are different from our problem of interest.

3. 1-D DMS PROBLEM

In this section, we define the 1-D DMS problem in a more formal way. We first
introduce some terms and definitions and then give a formal definition. We also
discuss the mobility models of data mules.

3.1 Terminology, Definitions, and Assumptions

For the job scheduling subproblem, a job τi has an execution time ei and a set Ii

of feasible intervals. A feasible interval I ∈ Ii is a time interval [r(I), d(I)], where
r(I) is a release time and d(I) is a deadline. A job can be executed only within its

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 7

feasible intervals. A simple job is a job with one feasible interval, whereas a general

job can have multiple feasible intervals. For instance, in Figure 1(c), job B’ and C’
are simple jobs and job A’ is a general job.

Similarly for the speed control subproblem, a location job τi has an execution time
ei and a set Ii of feasible location intervals. A feasible location interval I ∈ Ii is a
location interval [r(I), d(I)], where r(I) is a release location and d(I) is a deadline

location. A location job can be executed only within its feasible location intervals.
A simple location job is a location job with one feasible location interval, whereas
a general location job can have multiple feasible location intervals. In Figure 1(b),
location job B and C are simple location jobs and location job A is a general location
job.

For an interval I = [r, d] (also for a location interval), |I| denotes the length d−r.
We also define containment as follows: I ⊆ I ′ if and only if r′ ≤ r and d ≤ d′ where
I ′ = [r′, d′].

We make the following assumptions. Each sensor node is stationary and the
location is known. Communication range and execution time are known. Com-
munication is always successful in the communication range. All location jobs are
preemptible without any cost incurred and can be executed over multiple feasible
location intervals. There is no dependency among the location jobs. Data mule can
communicate with one node at a time. Depending on the dynamics constraint, data
mule may have constraints on the maximum speed and maximum acceleration.

3.2 Mobility Models

In the speed control subproblem, we consider three different constraints on the
dynamics of the data mule.

The first is “constant speed,” where the data mule cannot change the speed after
it starts to move, i.e., v(t) = v0 for some constant v0.

The second is “variable speed,” where the data mule can instantaneously change
the speed within a speed range. i.e., vmin ≤ v(t) ≤ vmax for given constants
vmin, vmax.

The third is “variable speed with acceleration constraint” model. In this model,
the data mule can change the speed, but the rate of change is within the maximum
absolute acceleration, i.e., |dv(t)/dt| ≤ amax for given constant amax.

The constant speed and variable speed models apply to ground vehicles such as
Packbot1, which is commonly used as a data mule in actual deployments. The
acceleration constrained model captures mobility more precisely and is most ap-
propriate when we cannot ignore the inertia, for example in case that a helicopter
is used as a data mule as in [Todd et al. 2007].

3.3 Problem Definition

Instance of the 1-D DMS problem is (L,J), where

—[0, L]: total travel interval of the data mule on the location axis

—J : set of location jobs; i-th location job τi is characterized by

—Ii: set of feasible location intervals

1http://www.irobot.com/

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · R. Sugihara and R. K. Gupta

—ei: execution time

Solution to the problem is a pair of time-speed profile v(t) and job schedule. Let
T denote the total travel time. Then the constraints on the motion of data mule
are

∫ T

0
v(t) = L and the dynamics constraints according to each mobility model.

After v(t) is determined, we can define a function f(x) that maps location x to time
t. Using f(x), we obtain a job scheduling problem, which we call an induced job

scheduling problem. We need to determine v(t) such that the induced job scheduling
problem has a “feasible schedule”: a job schedule that finishes all the jobs before
their deadlines. The objective of the 1-D DMS problem is to find a solution that
minimizes T .

4. ALGORITHMS FOR BASIC CASES

In this section, we consider the 1-D DMS problem for single data mule case. We
first introduce a feasibility test by processor demand analysis. Using that, we
design optimal algorithms for constant speed case and variable speed case. Then
we present the idea of heuristic algorithm for the acceleration constrained case.

4.1 Preliminary: Feasibility Testing by Processor Demand Analysis

To design optimal algorithms for the 1-D DMS problem, we use processor-demand-
based feasibility testing by Baruah et al. [1993]. Processor demand g in interval
[t1, t2] is the sum of the execution time of the tasks whose feasible interval is com-
pletely contained in the interval, and is defined as

g(t1, t2) =
∑

τ∈J ,

I(τ)∈[t1,t2]

e(τ).

Then the following theorem holds for periodic tasks with arbitrary relative dead-
line (i.e., relative deadline of each task can be smaller than its period):

Theorem 4.1 [Baruah et al. 1993]. Let τ = {T1, ..., Tn} be a task system. τ
is not feasible iff there exist natural numbers t1 < t2 such that g(t1, t2) > t2 − t1

Using the theorem, we can show that testing at each release time and deadline
is sufficient for guaranteeing the feasibility. In other words,

Theorem 4.2. Task system is feasible iff g(t′1, t
′
2) ≤ t′2−t′1 for any t′1 ∈ {ri}, t′2 ∈

{di} satisfying t′1 < t′2.

The proof is in the appendix. This feasibility testing is for periodic task system in
real time scheduling, but we can apply it for our case. Specifically, we can determine
the speed for each location interval so that the processor demand for the interval
is at most the time that the data mule stays in the interval.

4.2 Constant Speed

For constant speed case, the problem is to find the maximum speed v0 such that
all jobs can be finished. We present two optimal offline scheduling algorithms, each
for simple location jobs and general location jobs, respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 9

4.2.1 Simple Location Jobs. When each location job has one feasible location
interval, following simple algorithm in Algorithm 1 finds the maximum possible v0

such that all location jobs can be completed. It applies processor-demand based fea-
sibility test (Theorem 4.2) for all possible pairs of a release location and a deadline
location.

Algorithm 1 Find-Min-MaxSpeed

1: for each location interval I = [r(τ ′), d(τ ′′)] s.t. τ ′, τ ′′ ∈ J , r(τ ′) ≤ d(τ ′′) do

2: d =
∑

τ∈J ,

I(τ)∈I

e(τ) ⊲ Processor demand for I

3: u[I]← |I|
d

⊲ Maximum speed allowed for I

4: end for

5: return minI u[I]

This algorithm runs in O(n3) time where n is the number of location jobs in a
naive implementation, but we can improve it to O(n2) by computing the processor
demand incrementally. Specifically, for each starting location, by having a list of
jobs sorted by their deadline locations, we can incrementally extend the interval
and calculate the processor demand in O(1) time. Then it takes O(n) time for each
starting location, and since there are at most n starting locations, it takes O(n2)
as a whole.

4.2.2 General Location Jobs. For general location jobs case, we formulate the
problem as a linear programming problem.

We split the total travel interval [0, L] into (2m+1) location intervals [l0(= 0), l1],
[l1, l2], ..., [l2m, l2m+1(= L)] (li ≤ li+1), where m is the number of feasible location
intervals of all location jobs, and each li is either a release location or a deadline
location. For each location job τ ∈ J , we consider variables p0(τ), ..., p2m(τ),
in which pi(τ) represents the time allocated to job τ within the location interval
[li, li+1]. Let v0 denote the speed of data mule. Then we have the following linear
program:

Maximize v0

Subject to

—0 ≤ ∀i ≤ 2m, ∀τ ∈ J , pi(τ) ≥ 0.

—(Feasible intervals) 0 ≤ ∀i ≤ 2m, ∀τ ∈ J , if [li, li+1] 6∈ I(τ), pi(τ) = 0.

—(Job completion) ∀τ ∈ J ,
∑2m

i=0 pi(τ) = e(τ).

—(Processor demand) 0 ≤ ∀i ≤ 2m,
∑

τ∈J pi(τ) ≤ (li+1 − li)/v0.

The processor demand constraint becomes a linear constraint by introducing a
new variable u0 = 1/v0.

For the obtained solution, we can make a job schedule in the following way.
Location interval [li, li+1] is mapped to the time interval [

∑i−1
k=0 zk,

∑i

k=0 zk], where
zk = (lk+1 − lk)/v0. For each time interval, we allocate pi(τ1) for location job τ1

from the start of the interval, pi(τ2) for τ2 after that, and continue this for all
location jobs.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · R. Sugihara and R. K. Gupta

4.3 Variable Speed

In variable speed case, the data mule can change its speed anytime. To make the
problem realistic2, we enforce constraints on speed for this case and the data mule
can choose its speed within the range [vmin, vmax] for given vmin and vmax.

4.3.1 Simple Location Jobs. For simple location jobs case, we have the following
optimal offline algorithm shown in Algorithm 2. The algorithm is based on proces-
sor demand analysis and uses Find-Min-MaxSpeed internally. Interestingly, this
algorithm is equivalent to the one for optimal dynamic voltage scaling presented in
[Yao et al. 1995].

Algorithm 2 Sequential-Find-Min-MaxSpeed

1: loop

2: vc ← Find-Min-MaxSpeed
3: if vc < vmin then return INFEASIBLE
4: else if vc > vmax then

5: Set vmax for all remaining intervals and finish
6: else

7: Set vc for the current tight interval
8: Remove jobs within the tight interval
9: “Compress” remaining jobs

10: end if

11: end loop

Here is how this algorithm works. For the set of location jobs, Find-Min-
MaxSpeed finds a tight interval and the corresponding speed vc. It is the minimum
speed that makes the processor demand for each location interval equal or less than
the time allocated to it. In other words, if the data mule moves at the speed faster
than vc, there is at least one interval in which the allotted time is less than the
processor demand (thus violates the feasibility). Therefore, if vc < vmin (Line 3), it
is infeasible. “Compress” (Line 9) is an operation used in [Yao et al. 1995], which is
to remove the tight interval from the feasible intervals of all jobs and to connect the
remaining two intervals together to construct a new set of jobs. In each iteration, vc

is nondecreasing. This is shown by the same reasoning in [Yao et al. 1995]. When
vc reaches vmax, we cannot increase the speed of any remaining location intervals.
Thus we set the speed to vmax for all these intervals (Line 5).

The optimality of this algorithm is shown immediately by using the proof in [Yao
et al. 1995]. This algorithm runs in O(n3) time, since each iteration takes O(n2)
time by using the improved implementation of Find-Min-MaxSpeed and at least
one job is removed at each iteration.

As for online algorithms, when vmin = 0, the following algorithm shown in Algo-
rithm 3 is an optimal online algorithm that minimizes the total travel time. In the
algorithm, EDD-with-Stop, the data mule moves at vmax while executing a job

2Without speed constraints, the data mule can always minimize the total travel time simply by

moving at infinite speed and stopping to execute a job (and repeat this for each job).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 11

having the earliest deadline, just in the same way as ordinary Earliest Due Date
algorithm. However, when a job is not completed at its deadline, the data mule
stops until the job is completed and moves at vmax again.

Algorithm 3 EDD-with-Stop

Init JP : set of “pending” location jobs, i.e., the location jobs that are currently
executable and not finished yet, init with ∅
v: data mule’s speed, init with vmax

a(τ): time allocated to job τ , init with 0
xc: current location, init with Xs

On ∃τ ∈ JP , xc = d(τ) ⊲ When a job is unfinished at its deadline location
1: Ju ← {τ |τ ∈ JP , d(τ) = xc} ⊲ Set of jobs that needs to be finished here
2: v ← 0 ⊲ Data mule stops
3: Complete each job in Ju

4: JP ← JP \ Ju

5: v ← vmax ⊲ Move at vmax again
6: τed ← arg minτ∈JP

d(τ) ⊲ Job with the earliest deadline location
7: Execute τed

On ∃τ ∈ J , xc = r(τ) ⊲ When jobs released
8: JP ← JP ∪ {τ |r(τ) = xc}
9: τed ← arg minτ∈JP

d(τ)
10: Execute τed

On ∃τ ∈ JP , a(τ) = e(τ) ⊲ When jobs finished
11: JP ← JP \ τ
12: τed ← arg minτ∈JP

d(τ)
13: if τed 6= ∅ then Execute τed

14: end if

We have a following theorem about the optimality of EDD-with-Stop. The
proof is in the appendix.

Theorem 4.3. EDD-with-Stop is optimal for the 1-D DMS problem for sim-

ple location jobs with variable speed model when vmin = 0

4.3.2 General Location Jobs. For general location jobs, we design an offline
algorithm by linear programming formulation. The formulation is similar to the
one in constant speed case (Section 4.2.2), but we have additional variable zi for
each location interval [li, li+1] to represent the time that the data mule spends in
the interval. The linear program is as follows:

Minimize
∑2m

i=0 zi

Subject to

—0 ≤ ∀i ≤ 2m, ∀τ ∈ J , pi(τ) ≥ 0, zi ≥ 0.

—(Feasible intervals) 0 ≤ ∀i ≤ 2m, ∀τ ∈ J , if [li, li+1] 6∈ I(τ), pi(τ) = 0.

—(Job completion) ∀τ ∈ J ,
∑2m

i=0 pi(τ) = e(τ).

—(Processor demand) 0 ≤ ∀i ≤ 2m,
∑

τ∈J pi(τ) ≤ zi.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · R. Sugihara and R. K. Gupta

Location

Speed Speed Tight interval

Accel
interval

Decel
interval

Plateau interval

Speed

Recursively maximize

(a) (b) (c)

Fig. 2. Idea of the heuristic algorithm: (a) Increase the plateau speed. Dotted curves show the
acceleration / deceleration for the fastest possible travel covering the whole interval. Bold and
thin lines mean fixed intervals and free intervals, respectively. (b) A tight interval is found. (c)
Recursively maximize the speed for the remaining free intervals.

—(Max/min speed) 0 ≤ ∀i ≤ 2m, vminzi ≤ li+1 − li ≤ vmaxzi.

4.4 Variable Speed with Acceleration Constraint

When there is a constraint on acceleration, the problem is NP-hard for general
location jobs case3 [Sugihara and Gupta 2007]. Here we briefly present a heuristic
algorithm that gives a feasible solution for both simple and general location jobs
cases. For more details on the algorithm, please refer to [Sugihara and Gupta 2010].

4.4.1 Approach. Figure 2 shows the idea of the heuristic algorithm. The algo-
rithm works recursively, and in each recursion, we confine ourselves to the following
3-phase speed changing profile: first accelerate at the maximum acceleration, then
move at the constant speed, and finally decelerate at the maximum negative accel-
eration. We call each of these intervals accel interval, plateau interval, and decel

interval, respectively. Further we call the speed in the plateau interval as plateau

speed.
As shown in Figure 2(b), the main idea of the algorithm is to maximize the

plateau speed until we have a tight interval, which is defined as an interval whose
length (in time) is equal to the processor demand for that interval. We can naturally
extend the definition to define tight location interval, when we give the speed of data
mule for the interval.

For the intervals in the plateau interval but not in the tight interval, we can
still increase the speed without violating the feasibility. As shown in Figure 2(c),
we recursively apply the maximization procedure to them until there is no such
interval.

4.4.2 Details. The heuristic algorithm consists of following four steps:
Step 1. Simplify: Converting general location jobs to simple location jobs. For

each general location job, distribute the execution time to each feasible location
interval proportionally to its length.

Step 2. Maximize: Find maximum plateau speed and tight interval. In a similar
way as Sequential-Find-Min-MaxSpeed algorithm, for each interval of release
location of deadline location, calculate the plateau speed that makes it a tight
interval. Maximum plateau speed is the minimum of these plateau speeds. From
Theorem 4.2, this procedure does not destroy the feasibility, since the processor

3Complexity is unknown for simple location jobs case.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 13

demand is equal or less than the time given for each location interval of a release
location and a deadline location.

Step 3. Trim: Trim feasible location intervals of each location job. We first pro-
cess the accel interval and the decel interval, and then the tight interval. For each
job, we calculate the time that needs to be allocated in the remaining location
interval after trimming. We use the EDD algorithm and the LRT (latest release
time) algorithm [Liu 2000], which is equivalent to the EDD in reversed time axis
and is optimal.

Step 4. Recursion: By the previous step, all remaining jobs are separated into
two disjoint groups. One group of jobs populate the location interval from the end
of the accel interval to the beginning of the tight interval, and the other group
populate the location interval from the end of the tight interval to the beginning
of the decel interval. The speed for these intervals are not fixed yet, i.e., there may
still be some room for increasing the speed without destroying the feasibility.

Thus, we recursively maximize the speed by repeating from Step 2 for these
intervals. The number of recursions varies from zero to two depending on the
configuration of the tight interval.

5. PERIODIC 1-D DMS PROBLEM

In the periodic case of the 1-D DMS problem, each sensor node generates data at a
given rate and a data mule travels across the sensor field periodically. This models
a common type of sensor network applications that continuously monitors the field
in the long term. The objective is to minimize the period, i.e., the time the data
mule takes for each travel, since it largely affects the data delivery latency.

We introduce some notations for the periodic case. Let Tt denote the travel time
of one period. The data mule needs to stay at the base station for constant time
Tb to deposit the data to the base station and refuel etc. Thus the length T of one
period is Tt + Tb. For the system to be stable, in each period of travel, the data
mule needs to collect the data generated in one period.

5.1 Algorithms

5.1.1 Processor Demand Analysis. First we present an algorithm based on pro-
cessor demand analysis. This algorithm applies to the constant speed model with
simple location jobs, i.e., each location job has only one feasible location interval.

Let e(τ) denote the execution time of location job τ for one period. It is defined
as follows:

e(τ) ≡ λ(τ)

R
(Tt + Tb), (1)

where λ(τ) is the data generation rate of the node represented by τ and R is the
bandwidth, both of which are known constants.

Processor demand g(I) for location interval I for one period is defined as g(I) ≡
∑

τ :I(τ)⊆I e(τ), where I(τ) is the feasible location interval of location job τ . Let

g′(I) denote the processor demand for I for unit time, which is defined as follows:

g′(I) ≡ g(I)

Tt + Tb

=
∑

τ :I(τ)⊆I

λ(τ)

R
. (2)

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · R. Sugihara and R. K. Gupta

The set of location jobs is feasible if and only if the speed v of data mule satisfies

v ≤ min
I⊆I0

|I|
g(I)

=
1

Tt + Tb

min
I⊆I0

|I|
g′(I)

, (3)

where I0 is the total travel interval.
When Tb > 0, we obtain the following constraint using Tt = |I0|/v:

v ≤
(

min
I⊆I0

|I|
g′(I)

− |I0|
)

1

Tb

. (4)

For a feasible solution to exist, the following must be satisfied:

|I0| < min
I⊆I0

|I|
g′(I)

. (5)

When this is satisfied, the maximum speed is the right hand side of (4). When this
is not satisfied, it is not possible to collect data without loss.

When Tb = 0, we obtain the following from (3):

|I0| ≤ min
I⊆I0

|I|
g′(I)

. (6)

Note that (6) contains neither v nor Tt. What it implies is, when this is satisfied, the
speed of data mule can be arbitrary. This validates the experimental observation
in [Kansal et al. 2004] that the speed of data mule does not matter if the data mule
travels the sensor field periodically.

5.1.2 Online Algorithm. For the variable speed model with simple location jobs
and vmin = 0, we can use an online algorithm almost the same as EDD-with-
Stop. A data mule moves at vmax while executing a job with the earliest deadline
location. When a node still has data at its deadline, the data mule stops there and
collects the data until the node becomes empty. Here, “empty” refers to the state
when the buffer of a node becomes empty as the data mule collects the data from
it. Note that each node keeps generating data, so it will be the case that, after the
buffer of a node becomes empty, it starts to fill again while the data mule is still
in the communication range. In such a case, however, the data is collected in the
next period.

5.1.3 Linear Program Formulation. For the constant and variable speed models
that above two approaches cannot be used (e.g., general location jobs case), we can
use a linear program formulation.

The formulation is almost the same as the ones for the non-periodic cases with
general location jobs (Section 4.2.2, 4.3.2), but the job completion constraint is
replaced with the following one:

—(Job completion) ∀τ ∈ J ,
∑2m

i=0 pi(τ) =
(

∑2m

i=0 zi + Tb

)

λ(τ)/R, where R is the

bandwidth of communication from each node to the data mule.

The right hand side is the amount of time to transmit the data generated in one
period.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 15

This linear program may be either infeasible or unbounded4. When it is in-
feasible, it is impossible to collect all data. When it is unbounded, the speed is
arbitrary.

5.1.4 Iterative Method. When there is a constraint on acceleration, we can de-
sign a heuristic algorithm based on the one for non-periodic case (Section 4.4).
Specifically, we can estimate Tt iteratively in the following manner:

—Solve the linear program for the variable speed model by ignoring the acceleration
constraint. Set the result to the initial value of T̂t, the estimate of Tt.

—Repeat
—Run the heuristic algorithm with setting e(τ) = λ(τ)(T̂t + Tb)/R. Denote the

travel time as T̃t.
—If |T̃t − T̂t| < ǫ, break the loop. Otherwise, update T̂t by T̃t and repeat.

5.2 Feasibility Analysis

For the constant speed model with simple location jobs we have discussed the
feasibility conditions in Section 5.1.1.

For the variable speed model, we have a feasibility condition when vmin = 0
for both simple and general location jobs cases. Let’s define normalized total data
generation rate α as follows: α =

∑

τ λ(τ)/R. Then the following theorem holds.

Theorem 5.1. When vmin = 0, there exists a finite period T if 0 ≤ α < 1.

The proof is in the appendix.

6. 1-D DMS WITH MULTIPLE DATA MULES

In this section we discuss one dimensional DMS (1-D DMS) problem for multiple
data mules case.

6.1 Problem Definition

First we define k-DM 1-D DMS by extending the 1-D DMS problem:

k-DM 1-D DMS

INSTANCE: Set J of location jobs, for each location job τ ∈ J , an
execution time e(τ), and a set I(k)(τ) of feasible location intervals, for
each feasible location interval I(k) ∈ I(k)(τ), a release location r(I(k))

and deadline location d(I(k)), a start X
(k)
s , a destination X

(k)
d , number

of data mules K, and a constant T .
QUESTION: Is there a feasible speed control plan and a feasible job
schedule for K data mules satisfying Tk ≤ T for all k, where Tk is the

travel time of k-th data mule from X
(k)
s to X

(k)
d ?

Depending on the mobility assumption, there may be additional constraints (e.g.,
maximum speed, maximum acceleration) that determine the feasibility of a speed
control plan. In the rest of the paper, we focus on an optimization version of the
problem, in which we minimize maxk Tk.

4It may be unbounded only in the constant speed model.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · R. Sugihara and R. K. Gupta

For the optimization problem, we can use other objective functions as well. One
example is the average travel time over all data mules

∑

k Tk/n. However, it does
not appropriately reflect the overall data delivery delay, for example when some
of the data mules do not travel at all and have zero travel time. To avoid this,
average travel time weighted by the amount of collected data (

∑

k wkTk) would be
a more appropriate metric. However, this allows a small amount of data having
a very large delay, which is also not preferable in some applications. It also has
a practical issue that it is hard to be efficiently solved due to the non-linear cost
function. Maximum travel time maxk Tk gives a guarantee on the data delivery
latency, and appropriate for applications in which the maximum delivery latency
is important. Although this is also a nonlinear function, it can be converted to a
linear function with additional constraints, as we see later.

6.2 Constant Speed and Variable Speed

First we discuss the constant speed and variable speed cases. We consider two
separate cases depending on whether the paths of data mules are identical or not.

6.2.1 For Identical Paths. When paths are identical for all data mules, feasible
location intervals of each job are identical as well. We define the term “symmetric
schedule” as follows. We call a schedule is “symmetric” when the speed control
plan and job schedule are identical in all data mules. Then we have the following
theorem:

Theorem 6.1. For the optimization version of k-DM 1-D DMS with identical

paths for constant speed or variable speed models, there exists an optimal symmetric

schedule.

Proof. We show there always exists an equal or faster symmetric schedule than
asymmetric one. Consider splitting the total travel interval into short location
intervals by dividing at a location which is either a release or deadline location of
a job. Then, without loss of generality, we can assume each data mule moves at a
constant speed in each of these short location intervals. For each of these intervals,
let v1, v2, ..., vn denote the data mules’ speed in the location interval. Without
loss of generality, we assume v1 ≤ v2 ≤ ... ≤ vn. Total amount of collected data
c satisfies c ≤ ∑

i l/vi, where l is the length of the location interval. Maximum
time is l/v1. Now, consider a symmetric schedule in which each data mule moves
at v′ = n/(

∑

i 1/vi), which is the harmonic mean of the original speed. Since
n(l/v′) =

∑

i l/vi ≥ c, it is possible to collect the same amount of data as in the
original schedule. Maximum time is l/v′ ≤ l/v1, where the equality is satisfied if
and only if v1 = ... = vn.

To find an optimal schedule, we first divide the execution time of each location
job equally to each data mule and then apply the optimal algorithms for single data
mule case.

6.2.2 For Arbitrary Paths. When the path of each data mule is different, we
formulate the problem as a linear program in the following way. The formulation
is based on the same idea as the one in Section 4.3.2, but we introduce additional
variable z and constraints to convert the min-max objective into a linear objective.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 17

��� �������	
 �� �������� �� ���������� ��� �������������� �!� ""# $ %& '(
�)� *+������	
 ������������ ��������� ��� � ,-- .. /$,-- .. /$

��01 �2�3�4 ��5�

Fig. 3. Example of non-optimal symmetric schedule (in acceleration-constrained case): Two
location jobs have zero-length feasible location intervals with execution time e.

For k-th data mule, we split the location interval [X
(k)
s ,X

(k)
d] into (2m(k) + 1)

location intervals [l
(k)
0 (= X

(k)
s), l

(k)
1], [l

(k)
1 , l

(k)
2], ..., [l

(k)
2m, l

(k)
2m+1(= X

(k)
d)] (l

(k)
i ≤

l
(k)
i+1), where m(k) is the number of feasible location intervals of all location jobs

that are executable at this data mule, and each l
(k)
i is either a release location or

a deadline location. Let z
(k)
i denote the time that the k-th data mule spends in

location interval [l
(k)
i , l

(k)
i+1], and p

(k)
i (τ) denote the time it allocates to job τ in this

interval. Using a variable Z to represent min-max objective, we have the following
linear program:

Minimize Z
Subject to

—(Min-max objective) ∀k,
∑2m(k)

i=0 z
(k)
i ≤ Z. Note that minimizing Z is equivalent

to minimizing the maximum of the left hand side over all k.

—(Max/min speed) ∀k, 0 ≤ ∀i ≤ 2m(k), vminz
(k)
i ≤ l

(k)
i+1 − l

(k)
i ≤ vmaxz

(k)
i for

variable speed model. For constant speed model, (l
(k)
i+1 − l

(k)
i)/z

(k)
i = (l

(k)
j+1 −

l
(k)
j)/z

(j)
i for all i, j satisfying l

(k)
i+1 − l

(k)
i > 0, l

(k)
j+1 − l

(k)
j > 0.

—(Positive allocation time) ∀k, 0 ≤ ∀i ≤ 2m(k), ∀τ ∈ J , p
(k)
i (τ) ≥ 0.

—(Feasible intervals) ∀k, 0 ≤ ∀i ≤ 2m(k), ∀τ ∈ J , if [l
(k)
i , l

(k)
i+1] 6∈ I(k)(τ), p

(k)
i (τ) =

0.

—(Job completion) ∀τ ∈ J ,
∑

k

∑2m(k)

i=0 p
(k)
i (τ) = e(τ).

—(Processor demand) ∀k, 0 ≤ ∀i ≤ 2m(k),
∑

τ∈J p
(k)
i (τ) ≤ z

(k)
i .

6.3 Variable Speed with Acceleration Constraint

When there is a constraint on acceleration, the problem for multiple data mules
case is hard, as implied by the hardness of single data mule case.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · R. Sugihara and R. K. Gupta

—Sort the jobs in the ascending order of the number of executable data mules.
—For the jobs with the same number of executable data mules, sort them by execution

time in the descending order (i.e., long job first).

—For all jobs, from head of the list,
—Determine the strategy such that the maximum of current travel time is minimized.

The strategy is one of the followings:
—Assign: Assign the job to one data mule that can execute it.
—Spread: Divide the job equally to all data mules that can execute it.

—Remove the job from the list and update the travel time of each data mule.

Fig. 4. Heuristic algorithm for k-DM 1-D DMS problem with acceleration constraint

One interesting observation is that, for identical paths case, symmetric schedule
is not always optimal. Figure 3 shows such an example. In this example, the
data mules travel from location 0 to 3l. Each of two location jobs (representing
communication with two sensor nodes) have a zero-length feasible location interval
at location l and 2l, respectively. All curves in location-speed graphs represent
acceleration/deceleration at the maximum rate a. Since t1 = 2

√

l/a and t2 =

2
√

2
√

l/a, we have 3t1 + e > t1 + t2 + e and thus the symmetric schedule is not
optimal.

We design a heuristic algorithm based on the idea similar to List Scheduling
[Graham 1969]. Figure 4 shows the algorithm. First the jobs are sorted in decreas-
ing order of the number of executable data mules. This is to assign the jobs that
are executable at only one data mule first. In this way, there will be more freedom
later in balancing the travel time of each data mule by appropriately allocating the
jobs, which are executable at many data mules. The main idea of the algorithm is
to assign jobs one by one to a data mule so that the maximum travel time is mini-
mized. In addition to assigning a job to one of the data mules, we can also choose
to spread the job to all data mules that can execute it by equally dividing the job’s
execution time, if the resulting maximum travel time is shorter than assigning the
job to one data mule.

When each location job is not allowed to be executed by multiple data mules,
we modify the heuristic algorithm by eliminating the “spread” option when de-
termining the strategy. This modified version of the algorithm is also applicable
to the case without acceleration constraint. Although it is not optimal anymore
when applied to constant speed or variable speed cases, it is appropriate when it is
infeasible for a single node to communicate with multiple data mules.

7. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed algorithms by numer-
ical experiments. We first consider the variable speed with acceleration constraint
model and compare the performance of the proposed heuristic algorithm with mul-
tihop forwarding and a naive speed control algorithm. Then we compare one of the
optimal algorithms with a previously proposed algorithm to examine how it can
improve the performance and to argue how the proposed algorithms are useful in

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 19678 9 :;<= >?@ AB 6>CDE@F GH 8 6>CDE@ 6>CDE@IJ KLJ KIJLH MN CDE
OPQ
ORQ

Fig. 5. Randomly generating test cases: (a) For comparison with multihop forwarding. Fixed

nodes are aligned on line SS′; (b) For multiple data mules case. An example with two data mules
(k = 2) is shown.

practice.

7.1 Performance of Heuristic Algorithm in Acceleration Constrained Case

For the first experiment, we compare the data delivery latency and energy con-
sumption between data mule approach and multihop forwarding approach. Then
we compare the performance of the heuristic algorithm with a naive method in case
of single and multiple data mules case.

7.1.1 Method. We use Matlab for simulation experiments. Besides the heuristic
algorithms, we have implemented a naive method for speed control. In the naive
method, a data mule stops to collect data from each node one by one. Specifically,
a data mule moves to the point on the path that is the closest to the node, collects
data from the node while stopping, and moves to the next point. This is similar to
the one used in [Ma and Yang 2007], though they do not assume an acceleration
constraint. When there are multiple data mules, each node is assigned to the data
mule whose path is the closest to it.

We randomly generate test cases in the following ways for each of the two exper-
iments. For the first experiment, we need to guarantee the connectivity between
the base station and each node, since otherwise multihop forwarding approach is
not feasible. For this purpose, we generate node placements as shown in Figure
5(a), in which we arrange nfixed “fixed” nodes on the horizontal dotted line SS′,
each of them are r apart, where r is the communication range. Base stations are
located at S and S′, assuming the data mule starts from and comes back to the
base station. Then we put n− nfixed “random” nodes at random locations in the
rectangle within the distance (

√
3/2)r from the horizontal line. In this way we can

guarantee that each of these random nodes has at least one fixed node or the base
station within its communication range and thus is reachable to the base station

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · R. Sugihara and R. K. Gupta

Table I. Comparison with multihop forwarding: Amount of transmission is relative
to the minimum possible amount. Maximum latency with asterisk is the lower
bound given in [Gandham et al. 2006].

#node (n)
Data mule Multihop

Heuristic Naive forwarding

20
Max. Latency (sec) 220.0 620.0 (270)*

Transmission (max/avg) 1.0/1.0 10.0/5.5

50
Max. Latency (sec) 502.1 1098.3 (720)*

Transmission (max/avg) 1.0/1.0 25.1/6.0

80
Max. Latency (sec) 800.0 1538.9 (1170)*

Transmission (max/avg) 1.0/1.0 41.2/6.0

via multihop forwarding. In case of data mule approach, the data mule moves from
S to S′ on the straight line. All the nodes are within r from the trajectory and thus
the data mule can collect data from them. We set nfixed = 20, n = {20, 50, 80},
and r = 100[m] in the experiment.

For the second experiment on multiple data mules case, we have random nodes
only and no fixed nodes (Figure 5(b)). The vertical coordinate of the deployment
area is [−(

√
3/2)r, (

√
3/2)r], which is same as the first case. The path for i-th data

mule is a horizontal line on the vertical coordinate of ((2i − 1)
√

3/2k −
√

3/2)r,
where k is the total number of data mules. This setting makes each data mule
cover the strip of same size. We used the same parameters as the first experiment:
n = {20, 50, 80}, r = 100[m], and L = 2100[m]. The number of data mules is
k = 1, 2, 3.

For both experiments, we set the execution time e = 10[sec], i.e., a data mule
needs 10 seconds to collect all the data from each node. Each experiment is repeated
for 10 times on each case and the average is used as the result. We use the variable
speed with acceleration constraint as the mobility model of data mules and set
amax = 1[m/s2] and vmax = 10[m/s] to roughly simulate the mobility capability of
a radio controlled helicopter used in [Todd et al. 2007].

7.1.2 Comparison with Multihop Forwarding. First we compare data mule ap-
proach and multihop forwarding approach in terms of latency and energy consump-
tion. We use one data mule in both of the heuristic and the naive algorithms for
data mule approach. For a multihop forwarding algorithm, we use a simple one
that each node forwards the data that it generated and received from other nodes
to its neighbor node that is closest to the base station.

Table I shows the maximum latency and amount of transmission in these ap-
proaches averaged for 10 different node placements for each n. Latency is measured
by the total travel time in case of data mule approach. For multihop forwarding ap-
proach, we use a lower bound derived in [Gandham et al. 2006], where the authors
studied the problem of minimum latency convergecast in several different network
topologies. For a tree network, they gave a lower bound of max(3nk − 3, N) where
nk is the size of the maximum branch and N is the total number of nodes. Since
we can see the network used in our experiment as a tree network whose maximum

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 21

branch has at least n/2 nodes, we use 3n/2 − 3 as the lower bound of maximum
latency in multihop forwarding. The amount of transmission is the amount of data
that each node sends to the data mule (in data mule approach) or a neighbor node
(in multihop forwarding). It is normalized so that the value becomes 1.0 when a
node only transmits all of its own data.

Maximum latency in data mule approach with the heuristic algorithm turned out
to be less than that of multihop forwarding. It is reasonable because in the data
mule approach the communication is one way from each node to the data mule,
whereas in multihop forwarding each node needs to do receiving as well as sending,
which cannot be done at the same time. However, it should be noted that the results
would be different if we compared the average latency instead of the maximum. In
multihop forwarding the average would be roughly half of the maximum since the
data arrives at the base station in a trickle, whereas in the data mule approach the
average is same as the maximum since the data is delivered to the base station at a
time when the data mule comes back. Within data mule approach, latency in the
heuristic algorithm was around half of that in the naive method.

Amount of transmission is always minimum in data mule approach, since each
node sends its own data to the data mule and does not forward other nodes’ data.
On the other hand, it was around six on average in multihop forwarding and the
maximum was proportional to the number of nodes. Since communications account
for major part of energy consumption at nodes, these results suggest that data
mule approach is more energy efficient roughly by six times compared to multihop
forwarding. Moreover, since the maximum amount of transmission occurs at the
node next to the base station and reachability to the base station is lost without
this node, functional lifetime in multihop forwarding is much shorter in this simple
forwarding algorithm compared to data mule approach.

7.1.3 Multiple Data Mules Case. Next we compare the heuristic algorithm and
the naive method in multiple data mules setting. Since the energy consumption at
the nodes measured by the amount of transmission is identical in both methods,
we compare the total travel time.

Figure 6 shows examples of speed control plans from these two methods. For
random node placement as shown in Figure 6(a), we use two data mules that move
along two dotted horizontal lines. Figure 6(b) shows the speed changes of two data
mules in the heuristic algorithm. The travel time of the data mules are 264.55
sec and 266.22 sec, respectively. Figure 6(c) shows the ones in the naive method,
in which the travel time is 727.75 sec and 630.28 sec, respectively. Not only the
maximum travel time is much shorter in the heuristic algorithm, travel time is also
balanced between two data mules compared to the naive method.

Figure 7 shows the travel time for different number of data mules (k) and different
number of nodes (n). For k = 2, 3 cases, we use the maximum travel time among
multiple data mules. In each case the heuristic algorithm reduced the travel time
by 40-60% from the naive method on average. The travel time does not improve for
the case of heuristic algorithm in n = 20 because it is almost the minimum possible
travel time that is determined by L, amax, and vmax.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · R. Sugihara and R. K. Gupta

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

S
pe

ed

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

S
pe

ed

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

S
pe

ed

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

S
pe

ed

Location

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−50
0

50

Location: X

Lo
ca

tio
n:

 Y

(c)

(b)

(a)

264.55sec

266.22sec

727.75sec

630.28sec

Fig. 6. Example of speed control plans (50 nodes, Number of data mules k = 2): (a) Node
placement. Filled circles are the node locations and large circles represent communication ranges.

Two dotted lines correspond to the trajectories of two data mules; (b) Speed control plans from
the heuristic algorithms; (c) Speed control plans from the naive method.

STUV
WXWWYWWZWW[WW\WWW\XWW

\ X]_̂`abc de fghg `_ibjklmnopoqrlstuqnot
vwtxy z{|}~��~� ����}~�����~�{ �{����ST�V

W\WWXWW]WWYWW�WWZWW�WW
\ X]_̂`abc de fghg `_ibjklmnopoqrlstuqnot

vwtxy z{|}~��~� ����}~�����~�{ �{���� ST�V
WXWWYWWZWW[WW\WWW\XWW\YWW\ZWW\[WW

\ X]^_`abc de fghg `_ibjklmnopoqrlstuqnot
vwtxy z{|}~��~� ����}~�����~�{ �{����

Fig. 7. Travel time for multiple data mules case: Maximum of all data mules. Average of 10

experiments for each case.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 23

7.2 Comparison with Adaptive Motion Control

Finally we compare the proposed algorithm with Adaptive Motion Control (AMC)
[Kansal et al. 2004; Somasundara et al. 2006] to see how it can improve the perfor-
mance in data collection. AMC is a speed control algorithm designed for periodic
data collection scenario and the main idea is as follows: a data mule keeps record
of data collection performance from each node in previous periods and slows down
or stops to collect more data when it encounters a node with poor performance.

Here is more detail of how AMC works. Given the latency requirement Treq, they
set the normal speed to 2s, where s = L/Treq and L is the total travel distance.
In other words, the data mule can spend extra Treq/2 time to collect data from
nodes with poor performance, since the travel time would be Treq/2 if it moves
without stopping. Then the data mule chooses k worst-performing nodes based
on previous performances, where k is a predetermined constant, and stops in the
communication range of each of these nodes for Treq/2k time to collect more data.

To allow direct comparison between our algorithm and AMC, we tested on peri-
odic data collection case and used the online algorithm based on EDD-with-Stop
(details in Section 5.1.2) as the proposed method. We used the same parame-
ters as [Somasundara et al. 2006] as follows: 50 nodes, speed range [vmin, vmax] =
[0, 2][m/s], and communication range r = 25[m]. Nodes are randomly deployed just
as in Figure 5(b), except that the vertical range is [−r, r] and there is only one data
mule. We used two values for travel length L to make dense (L = 200) and sparse
(L = 2000) deployments, where the dense deployment has the same node density
as the one used in [Somasundara et al. 2006]. For each case, we generated 20 ran-
dom deployments and measured the travel time per period and the data collection
rate, which is defined as the ratio of collected data among the generated data in a
period. We tested various data generation rates by changing α (normalized total
data generation rate: defined in Section 5.2) from 0 to 0.95. Each node generates
data at the same rate.

There are some more parameters to choose for AMC. Since AMC takes required
latency Treq as an input rather than finding the minimum latency, we set Treq =
2L/vmax. This is the minimum possible latency that 2s does not exceed vmax,
thereby we can use AMC without modification. In addition, in [Somasundara et al.
2006], how to choose k is not described and the value used in simulation experiments
is not given. As a result we used three different values (k = 10, 30, 50) to see the
effect.

Figure 8 shows the results for dense deployments. Travel time is fixed to 200
sec in AMC due to the reason explained above. For the proposed algorithm, the
travel time is 100 sec, which is fastest possible for this deployment, except for cases
of large α. As Figure 8(b) shows, data collection rate decreased in AMC as α
increases. The rate is 100% in the proposed algorithm by definition, whereas it
was down to 72 - 96 % in AMC, depending on different values of k (k = 30 was
the highest). Error bars are not shown in this graph for clarity, but the standard
deviation was small (< 1% for all data points).

Figure 9 show the results for sparse deployments. Travel time rapidly increased
in the proposed algorithm as α approached one and exceeded that for AMC. This
means the specified latency requirement (in this case, Treq = 2000 sec) cannot be

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · R. Sugihara and R. K. Gupta

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

alpha (data generation rate)

T
ra

ve
l t

im
e

(s
ec

)

alpha (data generation rate)

D
at

a
co

lle
ct

io
n

ra
te

Proposed (Optimal)

Latency constraint in AMC

Proposed (Optimal)

Latency constraint in AMC

Proposed (Optimal)

AMC (k=10)

AMC (k=30)

AMC (k=50)

Proposed (Optimal)

AMC (k=10)

AMC (k=30)

AMC (k=50)

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

(a) (b)

Fig. 8. Comparison with Adaptive Motion Control (AMC): Dense deployment (L = 200) (a)

Travel time of each period (avg. ± s.d.) (b) Data collection rate

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.2 0.4 0.6 0.8 1

alpha (data generation rate)

T
ra

ve
l t

im
e

(s
ec

)

alpha (data generation rate)

D
at

a
co

lle
ct

io
n

ra
te

Proposed (Optimal)

Latency constraint in AMC

Proposed (Optimal)

Latency constraint in AMC

Proposed (Optimal)

AMC (k=10)

AMC (k=30)

AMC (k=50)

Proposed (Optimal)

AMC (k=10)

AMC (k=30)

AMC (k=50)

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

(a) (b)

Fig. 9. Comparison with Adaptive Motion Control (AMC): Sparse deployment (L = 2000)

satisfied theoretically without data loss. Figure 9(b) shows a similar trend as the
dense deployment case for the data collection rate. The standard deviation was
less than 4% for all data points. The rate got smaller in larger α and was down
to 51 − 82%. A notable thing is that k = 50 yielded the best results, whereas
k = 30 was the best in sparse deployments. This implies that, to maximize the
data collection rate in AMC, it is critical to find an appropriate value of k for each
of different settings.

To summarize, the proposed algorithm improved the travel time, which is ap-
proximately equal to the data delivery latency, by up to 100% compared to AMC.
More importantly, apparently reasonable setting of latency requirement in AMC
can be theoretically impossible to achieve in some cases. Not only giving theo-
retical foundation for speed control problem, the proposed algorithm is useful in
practice as well, since it helps system designers to identify such cases and to choose
appropriate parameters when they use AMC or other speed control algorithms.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 25

8. CONCLUSIONS

We have presented the data mule scheduling (DMS) problem as a problem frame-
work for the problem of motion planning for data mules. Then we focused on the
1-D DMS problem, which consists of the speed control and job scheduling subprob-
lems, and presented optimal and heuristic algorithms for different mobility models
and different problem settings including periodic data generation and multiple data
mules. By simulation experiments, we have shown that data mule approach has a
large benefit over multihop forwarding in terms of energy efficiency and also that
the proposed heuristic algorithm performs much better than the naive method.
Further, by comparing with a previously proposed method for speed control, we
have demonstrated that our algorithm can be used in practice as well by providing
theoretical limits to designers so that they can choose parameters accordingly.

9. ACKNOWLEDGMENTS

This work has been partially supported by the DMEA research program under
contract H94003-07-C-0702 and the US National Science Foundation under grants
CCF-0702792 and SRS-0820034.

APPENDIX

A.1 Proof of Theorem 4.2

We first show that, for any arbitrary interval, there exists a pair of release time and
deadline that has the same processor demand:

Lemma A.1. For any t1, t2 satisfying t1 < t2 and g(t1, t2) > 0, there exist t′1 ∈
{ri} and t′2 ∈ {di} such that t1 ≤ t′1 < t′2 ≤ t2, g(t1, t2) = g(t′1, t

′
2) .

Proof. Choose t′1, t
′
2 as follows:

t′1 = min
τi∈T,ri≥t1

{ri}

t′2 = max
τi∈T,di≤t2

{di}

Since [t1, t2] contains at least one task, t1 ≤ t′1 < t′2 ≤ t2 is satisfied. Then
g(t1, t2) = g(t′1, t2), since there is no task released in interval [t1, t

′
1). Similarly,

since there is no task having a deadline in interval (t′2, t2], g(t′1, t2) = g(t′1, t
′
2).

Therefore, g(t1, t2) = g(t′1, t
′
2) for these t′1, t

′
2.

Lemma A.2. g(t1, t2) ≤ t2 − t1 for any t1, t2 satisfying t1 < t2 if and only if

g(t′1, t
′
2) ≤ t′2 − t′1 for any t′1 ∈ {ri}, t′2 ∈ {di} satisfying t′1 < t′2.

Proof. (“if” part) Proof by contrapositive. We first assume ∃t1,∃t2, (t1 < t2)∧
(g(t1, t2) > t2− t1) and prove ∃t′1 ∈ {ri},∃t′2 ∈ {di}, (t′1 < t′2)∧ (g(t′1, t

′
2) > t′2− t′1).

Since g(t1, t2) > t2 − t1 > 0, by Lemma A.1, there exist t′1 ∈ {ri} and t′2 ∈ {di}
such that g(t′1, t

′
2) = g(t1, t2) > t2 − t1. Choose t′1 = mini:τi∈T,ri≥t1{ri} and t′2 =

maxi:τi∈T,di≤t1{di}. Since there is at least one task contained in [t1, t2], t′2− t′1 > 0
and t2−t1 ≥ t′2−t′1. Therefore, ∃t′1 ∈ {ri},∃t′2 ∈ {di}, (t′1 < t′2)∧(g(t′1, t

′
2) > t′2−t′1).

(“only if” part) Obvious from Lemma A.1.

The theorem follows from Theorem 4.1 and Lemma A.2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · R. Sugihara and R. K. Gupta

A.2 Proof of Theorem 4.3

Every valid schedule that uses the speed between 0 and vmax can be converted to
the one that only uses 0 and vmax. Thus, for a valid schedule, the time to stop is
minimized if and only if the schedule is optimal. Further, for a valid and reasonable
schedule that does not have idle time while stopping, the idle time while moving at
vmax is minimized if and only if the schedule is optimal.

We consider another scheduling problem in which we want to maximize the allo-
cated time, or equivalently to minimize the idle time. We do not allow the processor
to execute a job after its deadline, and thus some jobs may be left unfinished. How-
ever, a non-standard assumption is that partial job execution counts in this problem.
We claim the following algorithm similar to EDD is optimal for the problem:

Algorithm: At any time, execute a job with the earliest deadline from
the set of available jobs

Note that this algorithm is identical to EDD algorithm when the system is un-
derloaded. We show this algorithm minimizes the idle time by showing that an
optimal schedule can be converted to it. Let A and Aopt denote the allocation
by the algorithm and the optimal schedule, respectively. Allocation during time
interval [ta, tb] is denoted as A(ta, tb). We compare A and Aopt from the beginning
and swap allocations in Aopt as follows when they differ:

—Case 1: Aopt(ta, tb) = τ1, A(ta, tb) = τ2, τ1 6= τ2

In this case, there exists a pair (t′a, t′b) such that t′a ≥ tb and Aopt(t
′
a, t′b) = τ2,

since the time allocated to τ2 by the time ta in Aopt is shorter by (tb − ta) than
that in A, and thus τ2 is not finished yet in Aopt. We can make a list of pairs
L = {(t′a, t′b)|t′a ≥ tb, Aopt(t

′
a, t′b) = τ2} such that

∑

(t′a,t′
b
)∈L(t′b − t′a) = tb − ta.

For all pairs (t′a, t′b) in L, we swap the allocation and obtain Aopt(t
′
a, t′b) = τ1

and Aopt(ta, tb) = τ2, which makes the allocation in (ta, tb) identical to A. It is
possible because the time t′b is before the deadline of τ1, since t′b ≤ d(τ2) ≤ d(τ1)
(because of EDD-based allocation).

—Case 2: Aopt(ta, tb) = ∅, A(ta, tb) = τ
From the same argument as Case 1, job τ is not finished in Aopt at ta, and we can
swap the allocation to obtain Aopt(t

′
a, t′b) = ∅ and Aopt(ta, tb) = τ for the pairs

in L = {(t′a, t′b)|t′a ≥ tb, Aopt(t
′
a, t′b) = τ} such that

∑

(t′a,t′
b
)∈L(t′b − t′a) = tb − ta.

—Case 3: Aopt(ta, tb) = τ , A(ta, tb) = ∅
This does not happen for the following reason: since the allocation up to time ta
is identical, τ is not finished yet in A at ta. However, it is a contradiction, since
τ is available at ta and the algorithm allocates time to a job whenever there are
any available jobs.

EDD-with-Stop allocates exactly the same way as this algorithm when the data
mule is moving (at vmax), thus minimizes the idle time while moving. Therefore,
EDD-with-Stop minimizes the total travel time.

A.3 Proof of Theorem 5.1

Without loss of generality, we can assume that a data mule either moves at vmax

or stops. Then the data mule is always in one of the following states:

ACM Journal Name, Vol. V, No. N, Month 20YY.

Speed Control and Scheduling of Data Mules in Sensor Networks · 27

(1) Moving at vmax and executing a job (i.e., collecting data from a node)

(2) Moving at vmax and not executing

(3) Stopping and executing a job

(4) Stopping at the base station (not executing)

Let T1, T2, T3, Tb denote the time in each mode in a period. Since T = T1 + T2 +
T3 + Tb and T1 + T2 = L/vmax, it is sufficient to show that T3 is finite. Denoting
the time the data mule spends on collecting data from this node by t(τ), we have

t(τ)R = λ(τ)(T1 + T2 + T3 + Tb),
∑

τ

t(τ) = T1 + T3.

From these equations, we have

α(T1 + T2 + T3 + Tb) = T1 + T3,

and thus, since α 6= 1,

T3 =
α

1− α
(T2 + Tb)− T1.

Therefore, if 0 ≤ α < 1, T3 is finite.

REFERENCES

Baruah, S. K., Howell, R. R., and Rosier, L. E. 1993. Feasibility problems for recurring tasks
on one processor. Theoretical Computer Science 118, 1, 3–20.

Chebrolu, K., Raman, B., Mishra, N., Valiveti, P. K., and Kumar, R. 2008. BriMon: A

sensor network system for railway bridge monitoring. In MobiSys ’08: Proceedings of the 6th

international conference on Mobile systems, applications, and services. 2–14.

Chen, J.-J., Wu, J., Shih, C., and Kuo, T.-W. 2005. Approximation algorithms for scheduling
multiple feasible interval jobs. In RTCSA ’05: Proceedings of the 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications. 11–16.

Ekici, E., Gu, Y., and Bozdag, D. 2006. Mobility-based communication in wireless sensor
networks. IEEE Communications Magazine 44, 7 (July), 56–62.

Gandham, S., Zhang, Y., and Huang, Q. 2006. Distributed minimal time convergecast schedul-
ing in wireless sensor networks. In ICDCS ’06: Proceedings of the 26th International Conference

on Distributed Computing Systems.

Graham, R. L. 1969. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics 17, 2, 416–429.

Ho, M. and Fall, K. 2004. Poster: Delay tolerant networking for sensor networks. In SECON

’04: Proceedings of the 1st IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks.

Jea, D., Somasundara, A. A., and Srivastava, M. B. 2005. Multiple controlled mobile elements
(data mules) for data collection in sensor networks. In DCOSS ’05: Proceedings of the 1st

international conference on Distributed Computing in sensor systems. 244–257.

Kansal, A., Somasundara, A. A., Jea, D. D., Srivastava, M. B., and Estrin, D. 2004. In-
telligent fluid infrastructure for embedded networks. In MobiSys ’04: Proceedings of the 2nd

international conference on Mobile systems, applications, and services. 111–124.

Liu, J. W. S. 2000. Real-time systems. Prentice Hall.

Ma, M. and Yang, Y. 2006. SenCar: An energy efficient data gathering mechanism for large scale
multihop sensor networks. In DCOSS ’06: Proceedings of the 2nd international conference on

Distributed Computing in sensor systems. 498–513.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · R. Sugihara and R. K. Gupta

Ma, M. and Yang, Y. 2007. SenCar: An energy efficient data gathering mechanism for large-

scale multihop sensor networks. IEEE Transactions on Parallel and Distributed System 18, 10,
1476–1488.

Polastre, J., Hill, J., and Culler, D. 2004. Versatile low power media access for wireless
sensor networks. In SenSys ’04: Proceedings of the 2nd international conference on Embedded

networked sensor systems. 95–107.

Rhee, I., Warrier, A., Aia, M., and Min, J. 2005. Z-MAC: a hybrid MAC for wireless sen-
sor networks. In SenSys ’05: Proceedings of the 3rd international conference on Embedded

networked sensor systems. 90–101.

Shih, C., Liu, J. W. S., and Cheong, I. K. 2003. Scheduling jobs with multiple feasible intervals.
In RTCSA ’03: Proceedings of the 9th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications. 53–71.

Simons, B. and Sipser, M. 1984. On scheduling unit-length jobs with multiple release

time/deadline intervals. Operations Research 32, 1, 80–88.

Somasundara, A. A., Kansal, A., Jea, D. D., Estrin, D., and Srivastava, M. B. 2006. Control-

lably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile

Computing 5, 8, 958–973.

Somasundara, A. A., Ramamoorthy, A., and Srivastava, M. B. 2004. Mobile element schedul-
ing for efficient data collection in wireless sensor networks with dynamic deadlines. In RTSS

’04: Proceedings of the 25th IEEE international Real-Time Systems Symposium. 296–305.

Somasundara, A. A., Ramamoorthy, A., and Srivastava, M. B. 2007. Mobile element schedul-
ing with dynamic deadlines. IEEE Transactions on Mobile Computing 6, 4, 395–410.

Stankovic, J. A., Spuri, M., Natale, M. D., and Buttazzo, G. C. 1995. Implications of
classical scheduling results for real-time systems. Computer 28, 6 (Jun), 16–25.

Sugihara, R. and Gupta, R. K. 2007. Data mule scheduling in sensor networks: Scheduling
under location and time constraints. UCSD Technical Report CS2007-0911.

Sugihara, R. and Gupta, R. K. 2010. Optimal speed control of mobile node for data collection
in sensor networks. IEEE Transactions on Mobile Computing 9, 1, 127–139.

Todd, M., Mascarenas, D., Flynn, E., Rosing, T., Lee, B., Musiani, D., Dasgupta, S.,
Kpotufe, S., Hsu, D., Gupta, R., Park, G., Overly, T., Nothnagel, M., and Farrar, C.
2007. A different approach to sensor networking for SHM: Remote powering and interrogation

with unmanned aerial vehicles. In Proceedings of the 6th International workshop on Structural

Health Monitoring.

Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., and Corke, P. I. 2005. Data collection,

storage, and retrieval with an underwater sensor network. In SenSys ’05: Proceedings of the

3rd international conference on Embedded networked sensor systems. 154–165.

Xing, G., Wang, T., Jia, W., and Li, M. 2008. Rendezvous design algorithms for wireless sensor
networks with a mobile base station. In MobiHoc ’08: Proceedings of the 9th ACM international

symposium on Mobile ad hoc networking and computing. 231–240.

Xing, G., Wang, T., Xie, Z., and Jia, W. 2007. Rendezvous planning in mobility-assisted wireless
sensor networks. In RTSS ’07: Proceedings of the 28th IEEE international Real-Time Systems

Symposium. 311–320.

Yao, F., Demers, A., and Shenker, S. 1995. A scheduling model for reduced CPU energy. In

FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, Washington, DC, USA, 374–382.

Ye, W., Heidemann, J., and Estrin, D. 2002. An energy-efficient MAC protocol for wireless
sensor networks. In INFOCOM ’02: Proceedings of the 21st Annual Joint Conference of the

IEEE Computer and Communications Societies. 1567–1576.

Zhao, W. and Ammar, M. 2003. Message ferrying: Proactive routing in highly-partitioned wire-
less ad hoc networks. In Proceedings of the IEEE Workshop on Future Trends in Distributed

Computing Systems. 308–314.

Received Mar 2009; revised Sep 2009, Dec 2009; accepted *** 200X

ACM Journal Name, Vol. V, No. N, Month 20YY.

